Regionally Enhanced Multiphase Segmentation Technique for Damaged Surfaces
نویسندگان
چکیده
Imaging-based damage detection techniques are increasingly being utilized alongside traditional visual inspection methods to provide owners/operators of infrastructure with an efficient source of quantitative information for ensuring their continued safe and economic operation. However, there exists scope for significant development of improved damage detection algorithms that can characterize features of interest in challenging scenes with credibility. This article presents a new regionally enhanced multiphase segmentation (REMPS) technique that is designed to detect a broad range of damage forms on the surface of civil infrastructure. The technique is successfully applied to a corroding infrastructure component in a harbour facility. REMPS integrates spatial and pixel relationships to identify, classify, and quantify the area of damaged regions to a high degree of accuracy. The image of interest is preprocessed through a contrast enhancement and color reduction scheme. Features in the image are then identified using a Sobel edge detector, followed by subsequent classification using a clustering-based filtering technique. Finally, support vector machines are used to classify pixels which are locally supplemented onto damaged regions to ∗To whom correspondence should be addressed. E-mail: V.Pakrashi@ ucc.ie. improve their size and shape characteristics. The performance of REMPS in different color spaces is investigated for best detection on the basis of receiver operating characteristics curves. The superiority of REMPS over existing segmentation approaches is demonstrated, in particular when considering high dynamic range imagery. It is shown that REMPS easily extends beyond the application presented and may be considered an effective and versatile standalone segmentation technique.
منابع مشابه
Segmentation Assisted Object Distinction for Direct Volume Rendering
Ray Casting is a direct volume rendering technique for visualizing 3D arrays of sampled data. It has vital applications in medical and biological imaging. Nevertheless, it is inherently open to cluttered classification results. It suffers from overlapping transfer function values and lacks a sufficiently powerful voxel parsing mechanism for object distinction. In this work, we are proposing an ...
متن کاملAutomatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI
Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...
متن کاملImage Segmentation Using the Multiphase Level Set in Multiple Color Spaces
The goal of image segmentation in imaging science is to solve the problem of partitioning an image into smaller disjoint homogeneous regions that share similar attributes. The novel technique of the multiphase level set based on principal component analysis (PCA) with adaptively selecting dominant factors for color image segmentation in color spaces is studied here. And simultaneously, the fina...
متن کاملHigh-velocity impact properties of multi-walled carbon nanotubes/E-glass fiber/epoxy anisogrid composite panels
This work reports the high-velocity impact response of multiscale anisogrid composite (AGC) panels. The aim of the present study is to evaluate the influence of surface-modified multi-walled carbon nanotubes (S-MWCNTs) at different S-MWCNTs contents (0-0.5 wt.% at an interval of 0.1 wt.%) on the high-velocity impact responses of E-glass/epoxy AGC. Surface modification of MWCNTs is confirmed by ...
متن کاملBayesian Approaches to Motion-Based Image and Video Segmentation
We present a variational approach for segmenting the image plane into regions of piecewise parametric motion given two or more frames from an image sequence. Our model is based on a conditional probability for the spatio-temporal image gradient, given a particular velocity model, and on a geometric prior on the estimated motion field favoring motion boundaries of minimal length. We cast the pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comp.-Aided Civil and Infrastruct. Engineering
دوره 29 شماره
صفحات -
تاریخ انتشار 2014